40 research outputs found

    Characteristics of neonatal GBS disease during a multicentre study (2007-2010) and in the year 2012

    Get PDF
    iNTRODUCTION: The characteristics of Group B Streptococcal (GBS) early onset (EOD) and late onset (LOD) neonatal infections in Italy were analyzed. Two periods were considered, a first 3-years period (2007-2010), when notification of GBS infections was enforced under the auspices of the Italian Ministry of Health, and a second 1 year period (2012) when reporting on neonatal GBS disease continued on voluntary basis. METHODS: A standardized form was used to collect data on cases of neonatal GBS disease. They included both maternal and neonatal data. RESULTS AND DISCUSSION: The two surveys underlined that preterm deliveries, precipitous labor and negatively GBS screened mothers are common causes of EOD occurrence, possibly explained by inadequate, or lack of, intrapartum antibiotic prophylaxis. Nevertheless, measures for reducing prevention failures and EOD incidence by an higher adherence to prevention strategies, as the Centre for Disease Control recommendations, are still possible and should be encouraged

    Modern role of magnetic resonance and spectroscopy in the imaging of prostate cancer

    Get PDF
    Recently, a large number of studies have shown that the addition of proton 1H-spectroscopic imaging (1H-MRSI) and dynamic contrast enhanced imaging (DCEMR) to magnetic resonance (MR) could represent a powerful tool for the management of prostate cancer (CaP) in most of its aspects. This combination of MR techniques can substantially sustain the clinical management of patients with CaP at different levels: in particular, (1) in the initial assessment, reducing the need for more extensive biopsies and directing targeted biopsies; (2) in the definition of a biochemical progression after primary therapies, distinguishing between fibrotic reaction and local recurrence from CaP. (C) 2011 Elsevier Inc. All rights reserved

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Characterization of Group B Streptococcus Type Capsular Polysaccharides

    No full text
    High performance liq. anion exchange chromatog. coupled with a pulsed amperometric detector was used to characterize the monosaccharide components, including sialic acid, of the type polysaccharide extd. from serotypes Ia and IV of group B streptococci
    corecore